
PMM U.S.S.R.,Vol.54,No.3,pp.302-308,199O 0021-8928/90 $lO.OO+O.OO 
Printed in Great Britain 01991 Pergamon Press plc 

MOTION OF CONTROLLABLE MECHANICAL SYSTEMS WITH SERVO-CONSTRAINTS* 

Some special features in the dynamics of systems with servo-constraints 
/I/, due to the fact that such constraints are non-ideal and 
disengageable, are studied. A constructive method is proposed to justify 
the axiom of ideal constraints for kinematically controllable systems and 
the principle of reduction of conditional to real constraints. The 
method is based on the general theory of motion of systems with non-ideal 
constraints, as developed in /?., 31 as it applies to systems with 
friction. Equations which enable one to stabilize motions relative to 
the manifold determined by the servo-constraints are developed and 
analysed. 

Be&n's theory /I/ is developed and subjected to a critcal analysis 
in /4-71. The special freatures of the analytical treatment of systems 
with servo-constraints and systems with conditional constraints were 
analysed in f8f. However, owing to the different treatment of the 
reaction forces in servo-constraints and the lack of a rigorous 
justification of the principle of reduction of conditional to real 
constraints, the question of whether there is a more intimate connection 
between the two theories remained open. The method proposed here enables 
one to establish conditions under which the theories of /l, 4/ are 
compatible and to describe the dynamics of systems with servo-constraints 
with due allowance for the parametric disengagement of such constraints 
/'9/. 

1. We consider a mechanical system whose state, taking into account ideal holonomic con- 
straints of the first kind /I/, is determined by coordinates gi(i := 1,2,...,lz). Suppose that 
the system is subjected to prescribed forces Qi and that its motion is limited by compatible 
and independent constraints, s#me of which are geometric: 

fa(gjrt)=O (faczC,;a== 1,2,...,a) (f.1) 
and some kinematic (not necessarily linear): 

'PR (4i, !&'> t) = 0 tcps E c,; P = 1, 2, . . .1 6) (1.2) 

The possible displacements permitted by the constraints are determined by e+h in- 

dependent relations /9/ 

and the manifold of admissible states of the system may be expressed as 

where C& @ = 1, 2, . I ., pf are independent Lagrangian coordinates and pS (S = I,&...,?+) in- 
dependent velocity parameters. Under these conditions the variations of the coordinates, &qi, 
can be expressed in terms of arbitrary quantities en, as follows: 

Let us assume that the first c of the constraints (1.11 and the first d of the constraints 
(1.2) are of the first kind. Denoting the reaction forces of the constraints of the first kind 
by NI and those of the servo-constraints by @,,,we can express the resultant reactions as 
fzt = Ni -+ Qi. For systems with non-ideal constraints, 
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(I*41 

and this is true for any possible displacements. 
We shall assume that the manifold of admissible states of the system generated by the 

servo-constraints only is expressed as 

(1.5) 

and that the constraints of the first kind are ideal. It then follows from (1.4) that 

for any possible displacement, and the reaction forces of the servo-constraints can be resolved 
uniquely into components mi" and aiT such that the left-hand side of the equality vanishes 
for mint while the quantities tD,Y% are admissible displacements. In this situation 

where & and pa are undetermined Lagrange multipliers, and uy certain coefficients of 
proportionality. 

The motion of the system is described by the equations 

in which the kinetic energy T is constituted without allowing for the constraints (1.1) and 

(1.2), and the generalized reaction forces of the constraints have the following structure: 

Along with the general Eqs.tl.81, in any consideration of systems with servo-constraints 
the equations of motion must also reflect the specific physical realization of the system. Let 
us consider one such system, which occurs not infrequently in applications 111. 

2. The possibility of interpreting conditional constraints (servo-constraints) as real 
constraints is known as the principle of reduction of conditional to real constraints /4/. 
The use of this principle involves incorporating in the system certain conditions, dictating 
that the reactions of the constraints equal zero. Through a specific example, it was shown 
in /0/ that the application of this principle to the solution of Beghin's problem leads to a 
contradictory conclusion. Below we shall clarify the reasons for this contradiction and 
establish conditions under which the theories in /I, 41 can be reconciled. 

Following Beghin, we shall assume that a system subject to e f f(e= a-c, f = b--d) 
servo-constraint relations can be split into two parts, C and Z,, such that C is not subject 
to any reactions of constraints of the second kind other than the reactions of Z,. Let us 
assume that the position of system Z,, which is subject to the servo-constraint reaction forces 

@i, is defined by coordinates nl+l(j = 1,2,...,n - 1) from the complete set gi(i = 1,2,...,n), 
Then the motion of system G will be described by the first 1 equations of system (1.81, in 
which we must substitute Qt = 0 (i = 1,2,...,E). Associated with these equations, as in the 
case of /l/, are the constraints (1.1) and (1.2). The problem of the motion of the system is 
well defined if the number of servo-constraints equals the number n-1 of parameters deter- 
mining the position of system 2,. 

To determine the servo-constraint reaction forces Qi(i = I+ 1, 1+ 2, . . ..n) one uses the 
remaining .n -I equations of system (1.8). These are considered together with the relations 
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(2.1) 

which follow from the condition that the generalized reaction forces of the servo-constraints, 
referred to the coordinates Qi (i .= 1, 2, . . ., E), must vanish. 

Consequently, in the case of the systems under consideration the principle of reduction 
of conditional to real constraints is equivalent to the usual method of incorporating the 
constraints and subsequently adding conditions (2.11~ according to which the reaction forces 
of the servo-constraints, referred to system C, must vanish. 

We shall show that the proposed method for investigating systems with servo-constraints 
enables one to find the conditions under which the theories af /l, 4/ can be reconciled. 
Indeed, the kinetic energy in Eqs.(1.8) does not involve the constraints (1.1) and (1.2). It 
may therefore be expressed as 

ir- rs(~)-i_ T(C,) 

where T(Z) and r(X,) axe the kinetic energies of systems C and Z,, respectively. Since 
only F'(Z) depends on the coordinates 42 (i = 1, 2,. 1 .? 1). Eqs.Il.81 yield a system of equations 

to which one adds relations (1.1) and (1+2), if one is not interested in the reaction forces 
of the servo-constraints. Introducing the notation qlix =I- vx((x= 1,2, . . ..n - I) and writing 
the equations of the canstraints as 

we obtain parametric constraints, which differ from those considered in /lO/ in that the func- 
tions 'pa also involve the derivatives of the parameters vx'(x = 1,2, . . ..n - 2). 

Eqs. (2.21, together with the constraints (2.31, comprise a -j- b + 1 equations in c + df 
II unknowns. The problem will be well-defined if the number of parameters ux is the same as 
the number e+f of servo-constraints. To determine the reaction forces of the servo-con- 
straints applied to system & one uses the remaining equations of (1.83 f considered together 
with relations 12.1) + 

Remark 1, Xirgetov ,'lOf, considering a controllable system I: with constraints {2,31, 
postulates the D'Alembert-Lagrange principle in the form 

1 
i2 aT(Z) aT (2) 

-------Q, t?h&=o at dqr’ aq, I 42.4) 

valid for any possible displacement determined by the conditions 

This makes it possible to derive the equations-of motion in the form of (2.2). The latter are 
considered in conjunction with constraints (2.31, among which there are e geometric and f 
kinematic servo-constraints. Since these constraints are reduced in /4/ to real constraints, 
one must consider conditions (2.5) together with the relations 

The equations of motion in the form (2.2) can be derived from (2.4), on the assumption 
conditions (2.5) and (2.6) are sati sfied, if and only if conditions (2.1) are satisfied. 
From the point of view of Beghin's theory I the total work (in the entire system) of the 
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servo-constraint reaction forces over the possible displacements vanishes if one puts 69, = 
O(i= 1+1,I+Z,...,n) in (1.6). When that is done, Eqs.(2.2) with conditions (1.1) and (1.2) 
are derivable from the general theory if and only if conditions (2.1) are satisfied. 

It follows that conditions (2.1) are necessary and sufficient for the conclusions of the 
theories of /l/ and /4/ to be identical. 

Remark 2. In the absence of parametric contact constraints in Eqs.(2.2), one must put 
Ni = 0 and add e + f servo-constraints. 

3. Along with the equations of the servo-constraints in systems (1.1) and (1.2), we must 
also consider the relations 

where qlv and 50 are parameters characterizing the continuous disengagement of the system from 
the geometric and kinematic constraints. With this parametric disengagement /9/, the deviations 
in the system are essentially represented by the left-hand sides of the servo-constraints, 
evaluated for real motion /12/, and instead of (1.5) one obtains the following representation 

tc+y (Qi, t) = ly (Y = 1, 2, . ‘t e) 

(pd+p (qi, qi’, t) = 50 (P = I, 2, ‘7 f) 

(3.1) 

for the manifold of admissible states: 

qi = Ai* (q,u 9~2 t) (Ai* E C,) 

Qi’ = Bi* ($7 %I PV3 5pr %‘) t) (Bi* E Cl) 
(3.2) 

where substituting qV = qV' = 5, = 0 yields Eqs.(1.5), which describe the manifold of admiss- 
ible states of the system prior to disengagement. 

To incorporate the c geometric and d kinematic constraints of the first kind in systems 
(1.1) and (1.2), we transform them to the variables defining the manifold (3.2) and assume 
that the geometric constraints thus obtained may be solved for the variables qP+1,qP+2, ..qk 
and the kinematic constraints for the variables P,.+~, pr+Z,...,pm. 

The manifold of admissible states of the system is defined by equations 

in which case the variations of the coordinates 69, are expressed in terms of arbitrary 
variations 6n,, 6~7,. 67~~ as follows: 

As we know 10, the D'Alembert-Lagrange principle for systems with servo-constraints can 
be written as 

where the variations are related by conditions admissible by constraints of the first kind. 
If allowance is made for the relations 

then the total work of the servo-constraint reaction forces may be reduced to a form enabling 
us to write Eq.(3.5) as follows: 

Replacing 6q, by their values (3.4), we obtain a system of differential equations which, 
by introducing the acceleration energy S, evaluated in accordance with (3.3), can be transformed 
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to 

(3.6) 

Together with the kinematic relations (3.3), these equations can be used to determine 

the unknowns pa, Qi, qla, Pg. The control parameters in these equations are h,+l, he+%, . . . . h,; pd+l, 

pd+2, . . ., pb; ul, $T, . . ., &I. 

For the systems considered in Sect.2, these equations must be taken together with con- 
ditions (2.1). 

Remark 3. Introducing the notation 

‘ly = Yvv 5, = Ye+p, rly = Yq+y 

'lV = vv, Co’ = ve+p (q = e + f) 

we obtain a system /ll/ 
y‘=Ay+BV (3.7) 

This system, which describes the deviation of the motion from the servo-constraints, is 
completely controllable /13/, and one can always find controls of the form V= V(y),V(O)- 0, 

which stabilize the trivial solution of the equations 

y' = Ay + BV (~1, Y (0) = Y’ 

Considering this system in conjunction with Eqs.(3.6), one can determine servo-constraint 
reaction forces that stabilize the motion relative to the manifold defined by the servo-con- 
straints, as well as equations whose limiting values correspond to the motion of the system 
dictated by these conditions. 

4. As examples of the application of our method to the investigation of systems with 
servo-constraints, we consider some problems of Beghin. 

Example 1. Retaining all the notation of /l, Sect.l7/, consider the motion of a plate c 
attached by a hinge to a circular disk CL. 

Confining our attention first to the case in which the servo-constraints 

o-8-&=0 (4.1) 

are satisfied exactly, and assuming that the variations of the coordinates are such that 
and that all conditions of Remark 2 are satisfied, we have 

The equations of motion (1.8), together with condition (2.1), which imply h = U, lead 
to the system 

[M (b2 + k2 + R2) $ II] fS” + P (a sin b + R cos p) = 2~ (4.2) 

Remark 4. In the framework of the theory of /lo/, the general equation of the dynamics 
of the system involves only prescribed forces. Therefore, the derivation of Eqs.(7.5) in /4/, 
based on incorporating in the prescribed force Q, a parameter u characterizing the reaction, 
lacks a rigorous basis. Application of the theory of /4/ to solve this problem involves the 
introduction of a parametric contact constraint, such as an equation expressing the condition 
that a servo-motor/l/ is coupled with the diskX,. 

Let us assume now that the initial conditions of the system are incompatible with Eq.(4.1) 
and it is required to solve the problem of stabilizing the motion relative to this manifold. 

Using the relations 
a=s+n+ni2, B=s 
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which identically satisfy the condition 
a--fi-finlZ=r, 

we introduce independent coordinates 2 and 1, in terms of which we express the general 
equation of the dynamics of the system: 

d aT aT 

The result is a system of equations which, in conjunction with 

n" = V(l, 11'). V (0, 0) = 0, 11 (0) = rl", n'*(O) = 'I'O 

whose trivial solution is asymptotically stable, can be written as 

the equation 

[M (b* + k* + R* - 2bR sin v) + I*] fi" -t [MR (R - b sin 7) i- 111 v (% n') - 
MbRn' (nI' f 28') cos n f F In sin fl+ R cos (p + q)j = 2~ 

[MR (R - b sin rl) + III p” + (MR* i- I,) V (11. q’) + MbRp’* cos q + RF cos (p + 

q) = 2u 

(4.3) 

(4.4) 

Eqs.(4.3) and (4.4) enable one to determine the motion of the system, as well as a servo- 
constraint reaction force @'a which stabilizes the motion relative to the manifold defined by 
the servo-constraint (4.1). In that case letting rld0 in Eqs.(4.4) we obtain a limiting 
system which can be reduced to the form of (4.2). 

ExwnpZe 2. Consider the problem of a homogeneous sphere of radius R sliding without 
friction over a material plane P. Retaining all the notation of /l, Sect.21/, let us assume 
that the plane P, upon which the reaction forces of the servo-constraints are acting, is of 
mass m, and the Euler kinematic equations are given by 

p = 6' cos$ + cp’ sin* sin 3 
q=Wsinrp-mcpcos+sinfI 

r = rp' + ql'costl 

The system, which is moving subject to constraints of the first kind 

j’ - II’ - R (El’ sin 9 + v’ cos Ip sin 3) = 0 
fi' - U' + R (W cos$ -j- rp’ sin rp sin 3) = 0 (4.5) 

must be subjected to the servo-constraints 
5'+ on= 0, n'- o&= 0 (4.6) 

Let us construct the equations of motion and determine the structure of the servo-con- 
straint reaction forces that stabilize the motion relative to the manifold defined by (4.6). 

The acceleration energy of the system is 

8 = S (2) + S (2,) = ‘/,M (f”* + q”*) -i_ ‘/*A (P’* + q’* + r’*) + ‘/*m (IL”* + t’*) 

(A = */*MR*) 

Using (1.8) to determine the components of the servo-constraint reaction forces and noting 
that by (2.1) the reaction forces referred to the coordinates of system C must vanish, we 
deduce that the only non-zero components are UJ,= G+,~',@,= ID,%. 

Considering the equations 

we use the relations 
5'+ on = 51, 9'- ef = 5a (4.7) 

0’ = R-l ha - 5, - of) co9 rl, + (Cl - p1 - ~q) sin $1 
(4.8) 

V' = R-lcte 6 HP* - 5* - oE) *intp + (s, - p1 - eq) c~s$] + r 

‘P’ = CR sin W’ ba - 5, - 4,) sin IP + (pl - g1 + os) cos ~1 

u’ = PI, U. = P2 

which identically satisfy conditions (4.5) and (4.7), to introduce velocity parameters c,, c*,pl, 
P¶, r. Transforming the acceleration energy to these variables, we obtain 

.S = '/*M t151' - o (5*+ WI* + [5*' + 0 (51 - erl)l*l + */* (161' - ~1' - 
o (51 + oE)P + Ipa’ - 52’ - 0 (51 - WI* + R*f*I) + ‘/*m (~1“ + ~1.3 
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Writing the equations of motion in the form (3.6) and adding the equations 

whose trivial solution is asymptotically stable, we obtain the system 

(4.9) 

(4.10) 

Eqs.(4.9)and (4.101, in conjunction with the kinematic relations (4.81, determine the 
motion of the system and the reaction forces of the servo-constraints. Letting cl-O, La+0 
in Eqs.(4.10) and (4.8) we obtain a limiting system corresponding to the satisfaction of the 
servo-constraint relations (4.6). 
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